If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+x=150
We move all terms to the left:
3x^2+x-(150)=0
a = 3; b = 1; c = -150;
Δ = b2-4ac
Δ = 12-4·3·(-150)
Δ = 1801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1801}}{2*3}=\frac{-1-\sqrt{1801}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1801}}{2*3}=\frac{-1+\sqrt{1801}}{6} $
| (2x+13)+(x+11)=180 | | 5w+8=32 | | 11x+29=15+5 | | s/6-42=144 | | a/5-1=13 | | x^2-3x=26 | | c/1846=6 | | 9(x-21)^2=63 | | Y+5x=1000 | | 6+x+12-2=20 | | 45-7x=7(7-x)-4 | | -5x+1=7x-17 | | 2400x-16X^2=600 | | 7x-12=10x-3 | | (3m-2)(9m-5)=0 | | (2x+32)+2=54 | | 6x-20+2x+12+x=180 | | 2x+32=55 | | 2x+10-5x=4x+18 | | 4x+20-6x+3x=20 | | 4(x-22)-7(x-33)=5-x | | 2*x-5=5x+23 | | 2x10-5x=4x+18x | | 0=n-20 | | 6x+7+9x-56=180 | | (5w+5)-w=(4w-1)+9 | | 2(a+4)-3(2a-5)=7+(4a-6) | | Y=2x2+7x-4 | | 5(2m-2)=4(m-8)+6 | | 162=4.459u+51.21 | | 3^6x-5=35 | | 4(y-1)-5(y+2)=9 |